Formation of cylindrical tube networks: advanced modeling
DOI:
https://doi.org/10.63053/ijset.68Keywords:
Advanced, Model, cylindrical, energyAbstract
Advanced tube forming materials enable the development of light and rigid deployable structures that have significant potential for the space sector. In particular, a cylindrical grating can be expanded from a small cylinder to a cylinder that is much thinner and longer, especially suitable for deploying solar arrays or antennas. The lattice formation behavior is derived from the nonlinear strain energy state obtained from the prestressing bands of orthotropic materials. Current analytical models used to describe the behavior of forming networks only consider bending strains in the strain energy formulation.
References
Bewlay, B. P., & Furrer, D. U. (2006). Spinning. In S. L. Semiatin (Ed.), ASM Handbook, Volume 14B, Metalworking: Sheet Forming (pp. 367–374). https://doi.org/doi.org/10.31399/asm.hb.v14b.9781627081863
Bhatt, R. J., & Raval, H. K. (2015). Comparative Study of Forward and Backward Flow Forming Process using Finite Element Analysis. Bonfring International Journal of Industrial Engineering and Management Science. https://doi.org/10.9756/bijiems.8053
Biba, N., Vlasov, A., Stebunov, S., & Maximov, A. E. (2015). An Approach to Simulation of Flow Forming Using Elastic-Visco-Plastic Material Model An Approach to Simulation of Flow Forming Using Elastic-Visco-Plastic Material Model. 13Th International Cold Forming Congress, 141–147.
Chang, S. C., Huang, C. A., Yu, S. Y., Chang, Y., Han, W. C., Shieh, T. S., … Wang, W. S. (1998). Tube spinnability of AA 2024 and 7075 aluminum alloys. Journal of Materials Processing Technology, 80–81, 676–682. https://doi.org/10.1016/S0924-0136(98)00174-5
Davidson, M. J., Balasubramanian, K., & Tagore, G. R. N. (2008). Experimental investigation on flow-forming of AA6061 alloy-A Taguchi approach. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2007.09.026
Fonte, V., & Tosdale, J. (1999). Flowforming of Zirconium and Titanium Pipe. Ge, T., Wang, J., Lu, G. D., & Pan, G. J. (2015). A study of influence of interference phenomenon on stagger spinning of thin-walled tube. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. https://doi.org/10.1177/0954405414543487
Gur, M., & Tirosh, J. (1982a). Plastic flow instability under compressive loading during shear spinning process. Journal of Engineering for Industry– Transactions of the ASME, 104 (1), 104(February), 17–22. https://doi.org/10.1115/1.3185791
Gur, M., & Tirosh, J. (1982b). Plastic Flow Instability Under Compressive Loading During Shear Spinning Process. Journal of Engineering for Industry, 104(1), 17–22. https://doi.org/10.1115/1.3185791
Haghshenas, M., Jhaver, M., Klassen, R. J., & Wood, J. T. (2011). Plastic strain distribution during splined-mandrel flow forming. Materials and Design, 32(6), 3629–3636. https://doi.org/10.1016/j.matdes.2011.02.014
Hayama, M., & Kudo, H. (1979a). Analysis of Diametral Growth and Working Forces in Tube Spinning. Bulletin of the JSME, 22(167), 776–784. https://doi.org/10.1299/jsme1958.22.776
Hayama, M., & Kudo, H. (1979b). Experimental Study of Tube Spinning. Bulletin of the JSME, 22(167), 769–775. https://doi.org/https://www.jstage.jst.go.jp/article/jsme1958/22/167/22_ 167_769/_articleHosford, W. F., & Caddell, R. M. (2011).
Metal Forming: Mechanics And Metallurgy (4th editio). Cambridge University Press. Houillon, M., Massoni, E., Ramel, E., & Logé, R. (2007). 3D FEM simulation of the flow forming process using lagrangian and ALE methods. AIP Conference Proceedings. https://doi.org/10.1063/1.2740821
Hua, F. A., Yang, Y. S., Zhang, Y. N., Guo, M. H., Guo, D. Y., Tong, W. H., & Hu, Z. Q. (2005). Three-dimensional finite element analysis of tube spinning. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2004.10.014
Jahazi, M., & Ebrahimi, G. (2000). Influence of flow-forming parameters and microstructure on the quality of a D6ac steel. Journal of Materials Processing Technology, 103(3), 362–366. https://doi.org/10.1177/0967010602033003003
Jalali Aghchai, A., Razani, N. A., & Mollaei Dariani, B. (2012). Flow forming optimization based on diametral growth using finite element method and response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. https://doi.org/10.1177/0954405412461328
Kalpakcioglu, S. (1964). Maximum reduction in power spinning of tubes. Journal of Engineering for Industry–Transactions of the ASME, 49–54. https://doi.org/10.1016/S0376-7361(09)70188-8
Kalpakjian, S., & Rajagopal, S. (1982). Spinning of tubes: A review. Journal of Applied Metalworking, 2(3), 211–223. https://doi.org/10.1007/BF02834039
Kalpakjian, Serope, & Schmid, S. (1990). Manufacturing engineering and technology. In Choice Reviews Online (Vol. 27). https://doi.org/10.5860/choice.27-5145
Kemin, X., Yan, L., & Xianming, Z. (1997a). A study of the rational matching relationships amongst technical parameters in stagger spinning. Journal of Materials Processing Technology, 69(1–3), 167–171. https://doi.org/10.1016/s0924-0136(97)00012-5
Kemin, X., Yan, L., & Xianming, Z. (1997b). The disposal of key problems in the FEM analysis of tube stagger spinning. Journal of Materials Processing Technology, 69(1–3), 176–179. https://doi.org/10.1016/S0924- 0136(97)00014-9
Kemin, X., Yan, L., & Xianming, Z. (2002). A study of the rational matching relationships amongst technical parameters in stagger spinning. Journal of Materials Processing Technology, 69(1–3), 167–171. https://doi.org/10.1016/s0924-0136(97)00012-5
Kemin, X., Zhen, W., Yan, L., & Kezhi, L. (1997). Elasto-plastic FEM analysis and experimental study of diametral growth in tube spinning. Journal of Materials Processing Technology, 69(1–3), 172–175. https://doi.org/10.1016/s0924-0136(97)00013-7
Kezhi, L., Nanhai, H., Yan, L., & Kemin, X. (1998). Research on the distribution of the displacement in backward tube spinning. Journal of Materials Processing Technology, 79(1–3), 185–188. https://doi.org/10.1016/S0924-0136(98)00009-0
Lee, K. S., Lai, M. O., & Chen, C. M. (1997). Flow-forming of super-tough polypropylene pipes using a twin motor-driven rollers setup. Journal of Materials Processing Technology. https://doi.org/10.1016/S0924- 0136(96)02266-2
Lee, K. S., & Lu, L. (2001). A study on the flow forming of cylindrical tubes. Journal of Materials Processing Technology. https://doi.org/10.1016/S0924- 0136(01)00585-4
Lexian, H., & Dariani, B. M. (2008). An analytical contact model for finite element analysis of tube spinning process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. https://doi.org/10.1243/09544054JEM1202
Li, K. Di, Liu, D. G., Li, J. S., Tang, B., & Kou, H. C. (2019). Numerical Simulation of Stagger Spinning for D406A High-Strength Steel. Materials Science Forum. https://doi.org/10.4028/www.scientific.net/msf.944.778
Li, Y., Wang, J., Lu, G. D., & Chen, Q. S. (2013). Three-dimensional finite element analysis of effects of roller intervals on tool forces and wall thickness in stagger spinning of thin-walled tube. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. https://doi.org/10.1177/0954406212466518
M. Runge. (1993). Spinning and Flow Forming. In Leifeld Metal Spinning. Ma, Z. E. (1993). Optimal angle of attack in tube spinning. Journal of Materials Processing Tech., 37(1–4), 217–224. https://doi.org/10.1016/0924- 0136(93)90092
Marini, D., Cunningham, D., & Corney, J. (2015). A Review of Flow Forming Processes and Mechanisms. Key Engineering Materials, 651–653, 750–758. https://doi.org/10.4028/www.scientific.net/kem.651-653.750
Marini, D., Cunningham, D., Xirouchakis, P., & Corney, J. R. (2016). Flow Forming: a Review of Research Methodologies, Prediction Models and Their Applications. International Journal of Mechanical Engineering and Technology, 7(75), 285–315. Mohebbi, M. S., & Akbarzadeh, A. (2010). Experimental study and FEM analysis of redundant strains in flow forming of tubes. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2009.09.028
Music, O., Allwood, J. M., & Kawai, K. (2010). A review of the mechanics of metal spinning. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2009.08.021
Nagarajan, H. N., Kotrappa, H., Mallanna, C., & Venkatesh, V. C. (1981). Mechanics of Flow Forming. CIRP Annals - Manufacturing Technology. https://doi.org/10.1016/S0007-8506(07)60915-9
Nahrekhalaji, A. reza F., Ghoreishi, M., & Tashnizi, E. S. (2010). Modeling and Investigation of the Wall Thickness Changes and Process Time in Thermo-Mechanical Tube Spinning Process Using Design of Experiments. Engineering. https://doi.org/10.4236/eng.2010.23020
Notarigiacomo, S., Placidi, F., Reynaert, A., Duchet, M., Valente, F., Santos, M., & Perez, I. (2009). The influence of flow-forming process parameters on the fatigue behaviour of high-strength steel wheels for the automotive industry. In EU Communities. https://doi.org/10.2777/37552
Novella, M. F., Ghiotti, A., Bruschi, S., & Capuzzo, R. (2016). Numerical Modelling of AlSi7 Tubular Components Flowformed at Elevated Temperature. Key Engineering Materials. https://doi.org/10.4028/www.scientific.net/kem.716.753
Park, J.-W., Kim, Y.-H., & Bae, W.-B. (1997). Analysis of tube-spinning processes by the upper-bound stream function method. Journal of Materials Processing Technology, 66, 195–203. Parsa, M. H., Pazooki, A. M. A., & Ahmadabadi, M. N. (2009). Flow-forming and flow formability simulation. International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-008-1624-0
Podder, B., Mondal, C., Ramesh Kumar, K., & Yadav, D. R. (2012). Effect of preform heat treatment on the flow formability and mechanical properties of AISI4340 steel. Materials and Design. https://doi.org/10.1016/j.matdes.2012.01.002
Poorganji, B. (2003). Investigation of chemical composition and microstructure effects on flow formability of high strength steels. University of Tehran. Rajan, K. M., Deshpande, P. U., & Narasimhan, K. (2002). Experimental studies on bursting pressure of thin-walled flow formed pressure vessels. Journal of Materials Processing Technology. https://doi.org/10.1016/S0924-0136(02)00298-4
Ram Mohan, T., & Mishra, R. (1970). Studies on power spinning of tubes. International Journal of Production Research, 351–364. https://doi.org/10.1080/00207547208929937
Razani, N. A., Jalali Aghchai, A., & Mollaei Dariani, B. (2011). Experimental study on flow forming process of AISI 321 steel tube using the Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(11), 2024–2031. https://doi.org/10.1177/0954405411398195
Rotarescu, M. I. (1995). A theoretical analysis of tube spinning using balls. Journal of Materials Processing Tech. https://doi.org/10.1016/0924- 0136(94)01772-7
Roy, M. J., Klassen, R. J., & Wood, J. T. (2009). Evolution of plastic strain during a flow forming process. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2008.03.030
Roy, M. J., Maijer, D. M., Klassen, R. J., Wood, J. T., & Schost, E. (2010). Analytical solution of the tooling/workpiece contact interface shape during a flow forming operation. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2010.07.011
Singhal, R. P., Das, S. R., & Prakash, R. (1987). Some experimental observations in the shear spinning of long tubes. Journal of Mechanical Working Technology. https://doi.org/10.1016/0378-3804(87)90057-
X Singhal, R. P., Delhi, N., Saxena, P. K., Commission, N. G., & Prakash, R. (1990). ESTIMATION OF POWER IN THE SHEAR SPINNING OF LONG TUBES IN HARD-TO-WORK MATERIALS. Journal of Materials Processing Technology, 23, 29–40. Singhal, R. P., Saxena, P. K., & Prakash, R. (1990). Estimation of power in the shear spinning of long tubes in hard-to-work materials. Journal of Materials Processing Tech. https://doi.org/10.1016/0924- 0136(90)90120-
J Spittel, M., & Spittel, T. (2009). Ferrous Alloys (Landolt-Börnstein, Ed.). Germany: H. Warlimont. Sivanandini, M., Dhami, S. S., & Pabla, B. S. (2012). Flow Forming Of Tubes-A Review. International Journal, 3(5), 1–11. Srinivasulu, M. (2013). Experimental investigations to predict mean diameter of AA6082 tube in flow forming process – A DOE approach. IOSR Journal of Engineering. https://doi.org/10.9790/3021-02635260
Srinivasulu, M., Komaraiah, M., & Rao, C. S. K. P. (2012). Experimental studies on the characteristics of AA6082 flow formed tubes. Journal of Mechanical Engineering, 4(October), 192–198. https://doi.org/10.5897/JMER11.063 Tariq, A., & Asif, M. (2016). Experimental investigation of thermal contact conductance for nominally flat metallic contact. Heat and Mass Transfer, 52(2), 291–307. https://doi.org/10.1007/s00231-015-1551-1
Wang, J., Ge, T., Lu, G., & Li, F. (2016). A study of 3D finite element modeling method for stagger spinning of thin-walled tube. Journal of Zhejiang University-SCIENCE A. https://doi.org/10.1631/jzus.a1500180
Wang, Z.R, Lu, & G. (1989). A suggestion on the standardization of English technical terminology used in rotary forming. Proceedings of the Fourth International Conference of Rotary Forming, October 17–21, 38–41. Wong, C. C. (2004). Incremental forming of solid cylindrical components using flow forming principles. Journal of Materials Processing Technology, 153– 154(1–3), 60–66. https://doi.org/10.1016/j.jmatprotec.2004.04.102
Wong, C. C., Dean, T. A., & Lin, J. (2003). A review of spinning, shear forming and flow forming processes. International Journal of Machine Tools and Manufacture. https://doi.org/10.1016/S0890-6955(03)00172-
X Wong, C. C., Lin, J., & Dean, T. A. (2005). Effects of roller path and geometry on the flow forming of solid cylindrical components. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2005.05.039
Xu, W., Zhao, X., Ma, H., Shan, D., & Lin, H. (2016). Influence of roller distribution modes on spinning force during tube spinning. International Journal of Mechanical Sciences. https://doi.org/10.1016/j.ijmecsci.2016.04.009
Xuefang Hu, Amir Hossein Derakhshanfard, Indrajit Patra, Imran Khalid, Abduladheem Turki Jalil, Maria Jade Catalan Opulencia, Reza Balali Dehkordi, Davood Toghraie, Maboud Hekmatifar, Roozbeh Sabetvand,The microchannel type effects on water-Fe3O4 nanofluid atomic behavior: Molecular dynamics approach, Journal of the Taiwan Institute of Chemical Engineers, Volume 135, 2022,104396,ISSN 1876-1070, https://doi.org/10.1016/j.jtice.2022.104396.
Yuan Zhou, Amir Hossein Derakhshanfard, S. Mohammad Sajadi, Dheyaa J. Jasim, Navid Nasajpour-Esfahani, Soheil Salahshour, D. Toghraie, S. Ali Eftekhari, Using adaptive neuro-fuzzy inference system for predicting thermal conductivity of silica -MWCNT-alumina/water hybrid nanofluid, Materials Today Communications,Volume 37,2023,107612,ISSN 2352-4928, https://doi.org/10.1016/j.mtcomm.2023.107612.
Derakhshanfard, A., Dashti, Y., Adiban, N. et al. Surface modification of polyester fabrics for improving oil–water separation efficiency using air pressure plasma without any additives. Chem. Pap. 78, 8059–8070 (2024). https://doi.org/10.1007/s11696-024-03655-4
Amini, Ali, Amirhossein Derakhshanfard, and Mohammad Reza Rahimpour. "Geothermal Reservoirs Modeling and Simulation Using Classical Methods." (2024).
Derakhshanfard, A. H. (2023). The Comparison of Two Random Vortex Methods and Corrected SLIC Algorithm For Simulation of Combustion Flow. International Journal of Modern Achievement in Science, Engineering and Technology, 1(1), 73–81. https://doi.org/10.63053/ijset.6
Derakhshanfard, A. H. (2023). Proposing a Algorithm for Optimizing Energy Consumption. International Journal of Modern Achievement in Science, Engineering and Technology, 1(1), 82–93. https://doi.org/10.63053/ijset.7
Derakhshanfard, Amir Hossein, Improving Cohesion of a Software System by Performing Usage Pattern Based Clustering.
Available at SSRN: https://ssrn.com/abstract=4129746
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.