The Role of Process Information in Narrations While Learning With Animations and Static Pictures

Authors

  • Mohammad Mahdi Mojtahedi Department of Animation, Tehran Branch, Islamic Applied Sciences University, Tehran, Iran

DOI:

https://doi.org/10.63053/ijset.8

Keywords:

Multimedia Static pictures

Abstract

The role of process information in annotating narrations used for learning with animations compared to static pictures is examined. In two experiments, seventh and eighth graders from German high schools were randomly assigned to learning environments which differed in the combination of visualization (no visualization vs. static pictures vs. animation) and type of narration (no narration vs. non-process narration vs. process narration.

References

• Adesope, O., & Nesbit, J. C. (2012). Verbal redundancy in multimedia learning environments. A meta-analysis. Journal of Educational Psychology, 104, 250e263.

• Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183e198.

• Ayres, P., & Paas, F. (2007). Can the cognitive load approach make instructional animations more effective? Applied Cognitive Psychology, 21, 811e820. Baddeley, A. (1986). Working memory. Oxford: Oxford University Press.

• Berney, S., & Betrancourt, M. (2016). Does animation enhance learning? A meta-analysis. Computers & Education, 101, 150e167.

• Betrancourt, M. (2005). The animation and interactivity principles in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 287e296). Cambridge: Cambridge University Press.

• Boucheix, J. M. (2008). Young learner's control of technical animations. In R. Lowe, & W. Schnotz (Eds.), Learning with animation (pp. 208e234). Cambridge: Cambridge University Press.

• Castro-Alonso, J. C., Ayres, P., & Paas, F. (2014). Learning from observing hands in static and animated versions of non-manipulative tasks. Learning and Instruction, 34, 11e21.

• Catrambone, R., & Seay, A. (2002). Using animation to help students learn computer algorithms. Human Factors, 44, 495e511.

• Chandler, P. (2004). The crucial role of cognitive processes in the design of dynamic visualizations. Learning and Instruction, 14, 353e357.

• Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293e332.

• Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton: Educational Testing Service.

• Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149e1160.

• Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. Review of Educational Research, 42, 237e288.

• Hegarty, M. (1992). Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Human Perception and Performance, 18, 1084e1102.

• Hegarty, M., Kriz, S., & Cate, C. (2003). The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction, 21, 325e360.

• Hof€ fler, T. N. (2010). Spatial ability: Its influence on Learning with visualizations - a meta-analytic review. Educational Psychology Review, 22, 245e269.

• Hof€ fler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17, 722e738.

• Hof€ fler, T. N., & Leutner, D. (2011). The role of spatial ability in learning from instructional animations: Evidence for an ability-as-compensator hypothesis. Computers in Human Behavior, 27, 209e216.

• Hof€ fler, T. N., Schmeck, A., & Opfermann, M. (2013). Static and dynamic visual representations: Individual differences in processing. In G. Schraw, M. T. McCrudden, & D. Robinson (Eds.), Learning through visual displays (pp. 133e163). Charlotte, NC: Information Age Publishing.

• Hof€ fler, T. N., & Schwartz, R. (2011). Effects of pacing and cognitive style across dynamic and non-dynamic representations. Computers & Education, 57, 1716e1726.

• Horton, R. L. (1978). The general linear model: Data analysis in the social and behavioral sciences. London: McGraw-Hill.

• de Jong, T. (2010). Cognitive load theory, educational research, and instructional design: Some food for thought. Instructional Science, 38, 105e134. Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in mulimedia instruction. Applied Cognitive Psychology, 13, 351e371.

• Kalyuga, S., Chandler, P., & Sweller, J. (2000). Incorporating learner experience into the design of multimedia instruction. Journal of Educational Psychology, 92, 126e136.

• Kalyuga, S., & Sweller, J. (2014). The redundancy principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 247e262). New York: Cambridge University Press.

• Kühl, T., Scheiter, K., Gerjets, P., & Edelmann, J. (2011). The influence of text modality on learning with static and dynamic visualizations. Computers in Human Behavior, 27, 29e35.

• Large, A., Beheshti, J., Breuleux, A., & Renaud, A. (1996). Effect of animation in enhancing descriptive and procedural texts in a multimedia learning environment. Journal of the American Society for Information Science, 47, 437e448.

• Lee, D. Y., & Shin, D. H. (2011). Effects of spatial ability and richness of motion cue on learning in mechanically complex domain. Computers in Human Behavior, 27, 1665e1674.

• Leppink, J., Paas, F., van Gog, T., van der Vleuten, C. P. M., & van Merrie€nboer, J. J. G. (2014). Effects of pairs of problems and examples on task performance and different types of cognitive load. Learning and Instruction, 30, 32e43.

• Lowe, R. K. (2008). Learning with animation. Where to look, when to look. In R. Lowe, & W. Schnotz (Eds.), Learning with animation (pp. S. 49e70). Cambridge: Cambridge University Press.

• Lowe, R. K., & Schnotz, W. (2014). Animation principles in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 513e546). New York: Cambridge University Press.

• Low, R., & Sweller, J. (2014). The modality principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 227e246). New York: Cambridge University Press.

• Mayer, R. E. (1989). Systematic thinking fostered by illustrations in scientific text. Journal of Educational Psychology, 81, 240e246. Mayer, R. E. (2001). Multimedia learning. Cambridge: Cambridge University Press.

• Mayer, R. E. (2006). Ten research-based principles of multimedia learning. In H. F. O'Neil (Hrsg.) (Ed.), Web-based learning (pp. 371e390). Mahwah, NJ:

• Erlbaum.

• Mayer, R. E. (2009). Multimedia learning. Cambridge: Cambridge University Press.

• Mayer, R. E., & Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83, 484e490.

• Mayer, R. E., & Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology, 84, 444e452.

• Mayer, R. E., Hegarty, M., Mayer, S., & Campbell, J. (2005). When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology: Human Perception and Performance, 11, 256e265.

• Moreno, R., & Mayer, R. E. (2002). Learning science in virtual reality multimedia environments: Role of methods and media. Journal of Educational Psychology, 94, 598e610.

• Narayanan, N. H., & Hegarty, M. (1998). On designing comprehensible interactive hypermedia manuals. International Journal of HumaneComputer Studies, 48, 267e301.

• Narayanan, N. H., & Hegarty, M. (2002). Multimedia design for communication of dynamic information. Journal Human-Computer Studies, 57, 279e315.

• Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84, 429e434.

• Paivio, A. (1986). Mental representations. A dual coding approach. Oxford: Oxford University Press.

• Plo€tzner, R., Bodemer, D., & Neudert, N. (2008). Successful and unsuccessful use of dynamic visualisations in instructional texts. In R. Lowe, & W. Schnotz (Eds.), Learning with animation (pp. 71e91). Cambridge: Cambridge University Press.

• Plo€tzner, R., & Lowe, R. (2004). Dynamic visualisations and learning. Learning and Instruction, 14, 235e240.

• Rieber, L. P. (1990). Animation in computer-based instruction. Educational Technology Research and Development, 38, 77e86.

• Rieber, L. P., & Kini, A. S. (1991). Theoretical foundations of instructional applications of computer-generated animated visuals. Journal of Computer-Based Instruction, 18, 83e88.

• Roscoe, R. D., Jacovina, M. E., Harry, D., Russell, D. G., & McNamara, D. S. (2015). Partial verbal redundancy in multimedia presentations for writing strategy instruction. Applied Cognitive Psychology, 29, 669e679.

• Schmidt-Weigand, F., & Scheiter, K. (2011). The role of spatial descriptions in learning from multimedia. Computers in Human Behavior, 27, 22e28.

• Schnotz, W., & Lowe, R. K. (2008). A unified view of learning from animated and static graphics. In R. Lowe, & W. Schnotz (Eds.), Learning with animation (pp. 304e356). Cambridge: Cambridge University Press.

• Schwan, S., & Riempp, R. (2004). The cognitive benefits of interactive videos: Learning to tie nautical knots. Learning and Instruction, 14, 293e305.

• Slavin, R. E. (1986). Best-evidence synthesis: An alternative to meta-analytic and traditional reviews. Educational Researcher, 15, 5e11. Sweller, J. (1988). Cognitive load during problem solving. Effects on learning. Cognitive Sience, 12, 257e285.

• Sweller, J. (1999). Instructional design in technical areas. Melbourne: ACER Press.

• Sweller, J. (2010). Cognitive load theory. Recent theoretical advances. In J. L. Plass, R. Moreno, & R. Brünken (Eds.), Cognitive load theory (pp. S. 29e47).

• Cambridge: Cambridge University Press.

• Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.

• Tversky, B., Morrison-Bauer, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57, 247e262.

• Wong, A., Leahy, W., Marcus, N., & Sweller, J. (2012). Cognitive load theory, the transient information effect and e-learning.

Published

2023-11-17

How to Cite

Mojtahedi, M. M. (2023). The Role of Process Information in Narrations While Learning With Animations and Static Pictures. International Journal of Modern Achievement in Science, Engineering and Technology, 1(1), 94–115. https://doi.org/10.63053/ijset.8

Issue

Section

Articles