In-Vitro Evaluation of Antimicrobial Efficacy of Spherical Green Ag-Tio2 NPs Using Sajne Leaves Extricate of Moringa Oleifera in Aqueous Media
DOI:
https://doi.org/10.63053/ijset.67Keywords:
Green synthesis, NPs, Moringa oleifera, Antibacterial activity, Antifungal activityAbstract
Environmentally friendly and biocompatible methods were employed for the green synthesis of Ag-TiO2 nanoparticles (NPs) using the leaf extract of Moringa oleifera as a capping and reducing agent. The successful synthesis of Ag-TiO2 NPs was observed through a wavelength shift within one hour of reaction. The formation of nanoparticles was confirmed through multiple analytical techniques, including UV–VIS spectroscopy, FTIR, XRD, EDX, and SEM analysis. X-ray diffraction and electron microscopy confirmed the spherical structure and size of the nanoparticles. EDX analysis verified the presence of silver ions in the doped TiO2 lattice, while SEM revealed the spherical morphology of Ag-TiO2 NPs. Bacterial concentrations of 1.8 × 10⁸ CFU/ml were tested using 20 ml of three samples: Moringa oleifera leaf extract, TiO2 NPs, and Ag-TiO2 NPs at concentrations of 12.5 mg/L, 25 mg/L, and 50 mg/L, in three separate trials. The nanoparticles demonstrated significant antimicrobial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), as well as antifungal activity against Aspergillus niger (A. niger). These findings suggest that Ag-TiO2 NPs hold potential for applications in biomedical fields.
References
B.K. Thakur, A. Kumar, D. Kumar, Green synthesis of titanium dioxide NPs using Moringa oleiferaleaf extricate and evaluation of their antibacterial activity, South African Journal of Botany 124 (2019) 223–227
D. S. Goodsell, Bionanomedicine in action: In Bionanotechnology: Lessons from nature John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2004.
R. P. Singh, V. K. Shukla, Raghvendra, S. Yadav, P. K. Sharma, P. K. Singh, A. C. Pandey, Biological approach of zinc oxide NPs formation and its characterization, Advanced Materials Letters, 2 (4) (2011) 313-317.
F. Hashemi, N. Tasharrofi, M. M. Saber, Green synthesis of silver NPs using Teucrium polium leaf extricate and assessment of their antitumor effects against MNK45 human gastric cancer cell Line, Journal of Molecular Structure, 1208 (2020) 127889
H. Elsayed, M. Hasanin, M. Rehan, Enhancement of multifunctional properties of leather surface decorated with silver NPs (Ag NPs), Journal of Molecular Structure, 1234 (2021) 130130
A.A. Moosa, A.M. Ridha, M. Al-kaser, Process Parameters for Green Synthesis of Silver NPs using Leaves Extricate of Aloe Vera Plant, Int. J. of Multidisciplinary and Current research, 3 (2015) 966–975.
K. Elumalai, S. Velmurugan, S. Ravi, V. Kathiravan, G. A. Raj, Bio-approach: Plant mediated synthesis of ZnO NPs and their catalytic reduction of methylene blue and antimicrobial activity, Advanced Powder Technology, 26 (2015) 1639-1651.
S. Ambika, M. Sundrarajan, Plant-extricate mediated synthesis of ZnO NPs using Pongamiapinnata and their activity against pathogenic bacteria, Advanced Powder Technology, 26 (2015) 1–6.
A. MA, E. CW, R. CL, Green chemistry and the health implications of NPs, Green Chem. 8 (2006) 417–432.
S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell NPs using Sajne (Azadirachtaindica) leaf broth. J. Colloid Interf. Sci., 275(2) (2004) 496-502.
O. V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez, V.M.J. Pérez, The greener synthesis of NPs, Trends in Biotechnology, 31 (2013) 240–248.
A. Bankar, B. Joshi, A.R. Kumar, S. Zinjarde, Banana peel extricate mediated novel route for the synthesis of silver NPs, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 368 (2010) 58–63.
H.P. Singh, S. Sharma, S.K. Sharma, R.K. Sharma, Biogenic synthesis of metal nanocatalysts using Mimosa pudica leaves for efficient reduction of aromatic nitrocompounds, RSC Advances, 4 (2014) 37816-37825.
A. T. Harris, R. Bali, On the formation and extent of uptake of silver NPs by live plants. J. Nanopart. Res. 10(4) (2008) 691-695.
K. N. Thakkar, S. S. Mhatre, R. Y. Parikh, Biological synthesis of metallic NPs. Nanomedicine: Nanotechnol. Biol. Med., l6(2) (2010) 257-262.
S. Iravani, Green synthesis of metal NPs using plants. Green Chem, 10 (2011) 2638-2650.
P. C. Sharma, M. B. Yelne, T. J. Dennis, Data base on medicinal plants used in ayurveda, 1 (2008) 70-71.
N. Ahmad, S. Sharma, Green Synthesis of Silver NPs Using Extricates of Ananascomosus, Green and Sustainable Chemistry, 2 (2012) 141-147.
G.Alagumuthu, R.Kirubha, Green synthesis of silver NPs using Cissusquadrangularis plant extricate and their antibacterial activity,UniversityInternational Journal of Nanomaterials and Biostructures, 2(3) (2012) 30-33.
N.P. Manandhar,M. P. Manandhar, Folklore medicine of Chitwan District, Nepal. Ethnobotany, 2 (1990) 33.
K. B. Ishnava, J. B. Chauhan, A. A. Garg ,A. Thakkar, Antibacterial and phytochemical studies on AzadirachtaIndicagigantia ( L .)R.Br. latex against selected cariogenic bacteria Saudi J Biol. Sci., 19(1) (2012) 87-91.
C. D. T. De Freitas, F. C. S. Nogueira, I. M. Vasconcelos, J. T. A. Oliveira, G. B. Dumont, M. V. Ramos,Osmotin purified from the latex of AzadirachtaIndicaprocera: biochemical characterization, biological activity and role in plant defense. Plant PhysiolBiochem, l49 (7) (2011) 738 -743.
J. S. Oliveira, L. V. osta-Lotufo,D. P. Bezerra, N. M. Alencar, J. D. Marinho-Filho, I. S. Figueiredo, In vivo growth inhibition of sarcoma 180 by latex proteins from AzadirachtaIndicaprocera. NaunynSchmiedebergs Arch Pharmacol vol. 382(2) (2010) 139-149.
R. Sehgal, S. Arya, V. L. Kumar, Inhibitory effect of extricates of latex of AzadirachtaIndicaprocera against CandidaAlbicans: a prilimary study. Indian J Pharmacolvol. 37 (5) (2005) 334-335.
M. C. C. Silva, A. B. da Silva, F. M. Teixeira, P. C. P. D. Sousa,R. M. M. Rondon, J. E. R. H. Júnior, Therapeutic and biological activities of Moringa oleiferaProcera (AIt ). R. Br. Asian Pac J Trop Med., 3(4) (2010) 332-336.
D. Bhardwaj, A. Singh, R. Singh, Eco-compatible sonochemical synthesis of 8-aryl-7,8-dihydro- [1,3]- dioxolo[4,5-g] quinolin-6(5H)-ones using green TiO2. Heliyon, 5(2) (2019) 1256-1262.
(a) Singh, Ruby, and Aakash Singh. "Regio-and stereoselective synthesis of novel trispiropyrrolidine/thiapyrrolizidines using deep eutectic solvent as an efficient reaction media." Journal of the Iranian Chemical Society 14 (2017): 1119-1129. (b) Singh, Ruby, et al. "An expedient synthesis of new imino-thiazolidinone grafted dispiro-pyrrolidine-oxindole/indeno hybrids via a multicomponent [3+ 2] cycloaddition reaction in a deep eutectic solvent." New Journal of Chemistry 44.19 (2020): 7923-7931. (c) Singh, Ruby, Shakeel A. Ganaie, and Aakash Singh. "Vitamin B1: a versatile organocatalyst for organic synthesis." Current Organocatalysis 4.2 (2017): 84-103.
a) Singh, Ruby, and Aakash Singh. "Selective synthesis of trispiropyrrolidine/thiapyrrolizidines using green deep eutectic solvent." Chem. Sci. Trans 7 (2018): 402-407. (b) Singh, Ruby, Shakeel Ahmad Ganaie, and Aakash Singh. "PEG-OSO 3 H catalyzed synthesis of spiro [acenaphthylene-thiazine] diones under sonication in aqueous medium." Chemistry & Biology Interface 7.5 (2017). (c) Singh, Ruby, Aakash Singh, and Diksha Bhardwaj. "Selective and Solvent‐Free Synthesis of Isoxazole‐Containing Spiro‐Thiazolidinones Using TiO2‐SO3H as Solid Catalyst." ChemistrySelect 4.33 (2019): 9600-9607. (d) Singh, Ruby, and Shakeel Ahmad Ganaie. "An eco-compatible synthesis of novel spiro [acenaphthylene-1, 2′[1, 3]-thiazolidine]-2, 4′(1 H)-diones using thiamine hydrochloride as efficient catalyst in aqueous medium." Research on Chemical Intermediates 43 (2017): 45-55. (e) Singh,, Ruby, et al. "Carbon-SO3H catalyzed expedient synthesis of new spiro-[indeno [1, 2-b] quinoxaline-[11, 2′]-thiazolidine]-4′-ones as biologically important scaffold." Synthetic Communications 49.1 (2019): 80-93.
(a) Singh, Aakash, and Ruby Singh. "Synthesis and Biological Evaluation of Some Sulfur-Containing Spiro Compounds." S-Heterocycles: Synthesis and Biological Evaluation. Singapore: Springer Nature Singapore, 2024. 243-271. (b) Singh, Ruby, et al. "Lewis acid surfactant combined (LASC) catalyst as a versatile heterogeneous catalyst in various organic transformations." Mini-Reviews in Organic Chemistry 17.2 (2020): 124-140.
(a) Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for NPs neurotoxicity. Environ Sci Technol 2006; 40: 4346-4352. (b) Badireddy AR, Hotze EM, Chellam S, Alvarez P, Wiesner MR. Inactivation of bacteriophages via photosensitization of fullerol NPs. Environ Sci Technol 2007; 41: 6627-6632. (c) S. Mahshid, Synthesis of TiO2 NPs by hydrolysis and peptization of titanium isopropoxide solution, J. Mater. Process. Technol., 2007, 189, 296–300.
Saxena, Swasti, et al. "Single-walled carbon nanotubes patterned as aromatic element rings through chemical refluxation method." Materials Today: Proceedings (2023).
S. Ahmed, S. Ullah, M. Ahmad, B. L. Swami, S.Ikram “Green synthesis of silver NPs using Azadirachtaindica aqueous leaf extricate” Journal of Radiation Research and Applied Sciences, 9 (2016) 1-7.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.